⠀
ARES V
Overview
Ares V was the sixth mission to land humans on the surface of Mars, and the fourth to be conducted by the United States. It was also the first US mission to land astronauts on the surface of Phobos. Departing in July 1990 and returning in April 1993, the four astronauts aboard spent a total of 989 days in space, of which 514 were on Mars at Huygens Crater, during which they conducted a multitude of various scientific experiments and programs, and explored an area of more than 30,000 square kilometers. Ares V was the first conjunction-class mission and also the first joint Mars exploratory mission to be conducted, with the Soviet Mars 91 expedition also taking place at the same time, and the astronauts and cosmonauts lived together on the Martian surface during their stay.
The Ares V spacecraft were broadly similar to the vehicles used on previous Ares missions. The astronauts traveled to and from Mars aboard the Transfer Vehicle
Ingenuity, which consisted of a forward Mission Module (MM), trailed by four Planetary Propulsion Modules (PPMs). The MM contained the habitation module which the crew stayed in during the spaceborne portions of their trip, along with electrical and life support equipment, and also housed the Mars Excursion Module (MEM)
Seahawk which ferried them to and from the Martian surface, as well as the Earth Entry Module (EEM)
Explorer which brought them back after the conclusion of the mission. Each Planetary Propulsion Module was a nuclear-powered and self-contained rocket stage that provided some of the impulse needed to travel from Earth to Mars, and back, using liquid hydrogen as propellant.
Compared to the vehicles used on the previous, opposition-class Ares missions, the ones on Ares V had to be able to withstand much more prolonged periods of time in space and on the Martian surface. The MEM was lightened by slightly reducing its scientific payload to allow for more propellant to be carried, so that its liquid oxygen would not boil off sufficiently to prevent it from returning to Mars orbit. The Transfer Vehicle itself also had to be redesigned to allow it to function in Mars orbit for more than a year without any crew aboard, since unlike on previous missions all of the astronauts traveled down to the surface. However, because the delta-v requirements for a conjunction-class mission are much lower, only four PPMs were needed for Ares V, and the lower Earth return velocity allowed for an Apollo Block IIIA Command and Service Module to be carried as the EEM, rather than the Block IIB used on previous missions. This in turn freed up additional mass which could be carried in the form of propellant tanks to refuel the MEM on orbit, allowing it to conduct a crewed landing on Mars’s moon Phobos near the end of the mission.
Background
The Ares Program had its roots in a Boeing study from early 1968, when their space division in Seattle, Washington, issued a six-volume, almost 2,000-page long report that was the culmination of more than 14 months of concentrated work - the Integrated Manned Interplanetary Spacecraft Concept Definition. That was received by NASA with little fanfare at the time, as they still had their hands full trying to get the Apollo Extension Program approved. With the Soviets already doing crewed Lunar flybys, and a landing looking imminent, all NASA resources were on trying to get the Apollo program, and what was still at the time being tentatively called LESA by some, off the ground as soon as possible.
A little over a year later however, the AEP began to be reevaluated in the wake of the landing of Zarya 5, and funding was being tentatively allocated for as many as 40 Apollo missions in the 1970-1980 period. In this environment, the director of the Marshall Space Flight Centre, Wernher von Braun, developed a systems architecture based on the 1968 Boeing study and pitched it as part of the new Integrated Program Plan that NASA Administrator Thomas O. Paine was pushing for. Von Braun presented the IPP to president Lyndon B. Johnson’s Space Task Group in August of 1969, advocating for a high flight rate of Apollo missions into the 1970s, the construction of several Earth orbit space stations, Lunar bases, and his Mars mission architecture, with the first expeditions being scheduled for the early 1980s. After careful consideration, the IPP was accepted and the budget for it allocated by congress in September of 1969, though at a reduced scale, and no fixed deadlines for the Mars architecture development was set, with them being penciled in as occurring at some indeterminate point in the future. The design of the Mars spacecraft was such that many of the systems required would be developed by other programs, and so there was little effort made to work specifically on it as an integrated architecture.
However, once again things changed in 1973, with the Soviet crewed Mars-Venus flyby. In response clear deadlines and goals for the Mars program, now officially named Ares, were given, and development work on the systems and spacecraft needed were started. The first mission, Ares I, departed in late 1979 and performed the first US crewed Mars orbital flight. Its primary goal was to test the Mars Excursion Module in low Mars orbit, and have it perform an uncrewed landing on and ascent from the Martian surface, in which it was fully successful. Ares II, departing in early 1982, performed the first actual crewed landing on Mars, with the astronauts staying on the surface for a little under two weeks. Ares III departed in early 1985 and performed a Venus flyby before reaching Mars, and returned after spending three weeks on the surface. Ares IV departed in mid 1986, while Ares III was still on their way back, landing later that year for another three weeks before returning.
Work began on the as-flown version of the Ares V mission in 1987, when representatives from NASA and Sovkosmos met to discuss their plans for the 1990 Mars transfer window. Previously NASA had intended to fly Ares V and VI simultaneously from 1990 to 1993, with the two spacecraft providing redundancy to each other. However, in the mid 1980s NASA was also in the process of running several other concurrent programs - expanding Shackleton Base, doing preliminary design work for the recently announced Space-Based Solar Power Program and a new super-heavy reusable launch vehicle to support it, expanding Space Station Freedom, beginning work on a new crewed station in GEO, and many other projects. This meant that any places where they had the opportunity to cut costs, they looked for ways to do so.
Initially, the concept of a joint mission with the Soviets was out of the question given the USSR’s slips further into authoritarianism in the late 70s and early 80s, however the September Revolution of 1985 and subsequent changes to the Soviet political structure resulted in the nation becoming much more democratic. Immediately after the revolution and in the following several years, massive reforms were implemented by Soviet Premier Svetlana Kovalev that restructured the government, began a transition to market socialism, and redefined foreign policy to prioritize renormalizing relations with the western world. The result of this was that in 1987 an agreement was formally signed between NASA and Sovkosmos to conduct a joint Mars expedition. Mars 91, the Soviet component, would be redeveloped as a conjunction-class mission, and together both would provide redundancy for each other if anything went wrong. To accommodate this, it was agreed that NASA would deliver presupply equipment to the Martian surface in the 1988 transfer window, and Sovkosmos, since they had not started planning for a long surface stay until recently, would do the same in the 1990 window. Because the Soviet presupplies would be leaving at the same time as the crewed ships, and as such there would be no way of knowing if they would arrive safely before the crews set off, it was agreed that the NASA presupplies would be capable of supporting the entire crew on the surface for the duration of the stay should the need arise.
NASA’s contribution to this would be four modified MEM descent stages, which would carry two habitation modules, each with 30 cubic meters of living space, along with two pressurized rovers, and several dozen tons of scientific equipment. They would be sent in batches of two, each propelled by a single PPM, thus requiring a total of just four launches.
Mission Details
The presupply launches were conducted without any issues, and so in 1990 construction on the orbital booster cluster for Ares V began. A Saturn VB blasted off from Space Launch Complex 39C on July 11th, placing its payload - the Mars Transfer Vehicle
Ingenuity’s Mission Module and MEM - into a 485 km parking orbit. Two Saturn VCs each carried one of
Ingenuity’s four planetary propulsion modules into orbit the next day, and they docked with the mission module successfully. The three launch pads were then refurbished for around two weeks each, and on the 25th two more Saturn VCs blasted off from SLC 39A and B, delivering the remaining two PPMs into orbit which then attached themselves to the transfer vehicle, almost completing it.
Then, on July 26th, 1990, Space Shuttle
Enterprise lifted off of SLC 39C and blasted her way into orbit. After rendezvousing and docking with
Ingenuity, the four astronauts selected for the mission transferred over to the mission module and began setting it up for their upcoming 15 month stay within it. The following day,
Enterprise used her Remote Manipulator System to pluck their Apollo Earth Entry Module
Explorer out of her payload bay and carefully insert her into her mounting position inside
Ingenuity’s aft interstage. After spending the next four days doing various checkout procedures to make sure all the spacecraft’s systems were operating nominally,
Enterprise undocked and performed her deorbit burn, landing soon after. Finally, on August 1st, 1990,
Ingenuity lit her drives and began her trans-Martian injection burn.
The transfer out to Mars was fairly uneventful, and on the 27th of February 1991
Ingenuity braked into low Martian orbit. She released her probes the following day, and then jettisoned her forward interstage ring, allowing the astronauts to separate in the MEM and begin their deorbit burn. The Mars Excursion Module, named
Seahawk, touched down on March 2nd, 1991, just three kilometers off target and well within the landing ellipse. The astronauts went on EVA for the first time later that day, unpacking several surface science experiments and planting a flag, before unfolding their Mars Roving Vehicle, a small four-person unpressurised rover. Two astronauts took the MRV to the landing site of the nearest presupply probe, and then drove back to the MEM in the pressurized rover to pick up the rest of the crew. Meanwhile, the crew of Mars 91, which had just finished stabilizing itself into low Mars orbit using its very low-thrust ion engines, also descended down to the surface, landing about 10 kilometers away from the American MEM. The Soviet cosmonauts had a small unpressurized MRV as well, and drove to meet up with the astronauts near the MEM. Two of the astronauts and cosmonauts stayed at the MEM in the small habitation module for the rest of the day, while the remaining five drove the pressurized rover and the Soviet MRV to the site of one of the presupply habitation modules and began setting it up.
After spending several days preparing the base site, which involved dismounting the habitation modules from their descent stages, driving them on their small wheels to the same location, around halfway between the American and Soviet MEMs, and joining them together, the entire crew of Ares V and Mars 91 converged on the base and began inhabiting it properly. Experiments were set up outside, and a small nuclear reactor was powered up to supply electricity. The remaining two pressurized rovers, one US and one Soviet, were recovered from their presupply probes and driven to the base, as was an additional unpressurised MRV.
Over the next 18 months, the seven astronauts and cosmonauts explored the Martian surface, setting up scientific equipment, prospecting around with the rovers, and collecting various surface samples. At one point, about five months into the stay, they performed the longest expedition in the entire mission, driving one of the pressurized rovers for a total of two weeks directly away from the base, and then another two weeks back, reaching a distance of more than 200 kilometers. In total almost 1,100 kilograms of material from the surface was collected, and several drilling rigs that were set up allowed for some of this material to be gathered from depths as low as 50 meters.
Finally, on the 28th of July 1992, the two crews said goodbye to each other and climbed aboard their respective MEMs. The American’s lifted off first, followed by the Soviets several hours later, and they both successfully rendezvoused in orbit with their transfer vehicles. Over the next month
Ingenuity stayed in Martian orbit, conducting various experiments and releasing her complement of small uncrewed orbital probes to continue doing research after she left, before lighting up her engines on August 15th and raising her apoapsis up to match Phobos’s orbital altitude. Two of her astronauts then climbed back into the ascent stage of the MEM, and transferred several thousand kilograms of propellant into it from tanks in the Mission Module, before undocking, and matching velocities with Phobos. Built into the sides of the MEM were four small spearguns, which could be fired to tether her to the surface while the astronauts took surface samples. After three days, during which time the crew flew around Phobos using an AMU, performing various experiments from a multitude of locations, the MEM departed and once again matched velocity with
Ingenuity, before redocking inside her forward interstage. After the astronauts transferred back into the MM, the ascent stage of the MEM was then finally jettisoned, to be left in an elliptical orbit and eventually collide with Phobos’s surface.
On the 25th of August, 1992,
Ingenuity performed her trans-Earth injection burn, beginning her long trek back sunwards. 228 days later, on April 10th 1993, her crew clambered into the EEM
Explorer, undocked, and performed a small separation and course adjustment burn to put her on-target for her landing zone in the center of the Pacific Ocean. A day later she began atmospheric entry, splashing down without incident and being recovered by the USS
Essex, a Wasp-class amphibious assault ship, who was on loan from the US Navy along with her escort group.
-------------- --------------
-------------- --------------
Mission Timeline
1988 Apr 2 - Ares 5A launch (SLC-39B) - Saturn VB delivers Mars Presupply Modules MPM-102 and 103 into Low Earth Orbit
1988 Apr 2 - Ares 5B launch (SLC-39A) - Saturn VC delivers Planetary Propulsion Module PPM-24 into Low Earth Orbit
1988 Apr 3 - STS-251 launch (SLC-39C) - Space Shuttle
Discovery OV-103 is placed into low Earth orbit to oversee rendezvous and assembly of the presupplies
1988 Apr 4 - Ares 5A and 5B rendezvous and dock, forming
Presupply 1
1988 Apr 17 - Ares 5C launch (SLC-39A) - Saturn VB delivers Mars Presupply Modules MPM-104 and 105 into Low Earth Orbit
1988 Apr 17 - Ares 5D launch (SLC-39B) - Saturn VC delivers Planetary Propulsion Module PPM-25 into Low Earth Orbit
1988 Apr 19 - Ares 5C and 5D rendezvous and dock, forming
Presupply 2
1988 Apr 20 - Space Shuttle
Discovery OV-103 deorbits and lands safely
1988 Apr 23 -
Presupply 2 performs their trans-Martian injection burn
1988 Apr 25 -
Presupply 1 performs their trans-Martian injection burn
1990 Jul 11 - Ares 5E launch - Saturn VB delivers Mission Module MM-9 and Mars Excursion Module
Seahawk MEM-107 into low Earth Orbit
1990 Jul 12 - Ares 5F launch - Saturn VC delivers Planetary Propulsion Module PPM-26 into Low Earth Orbit
1990 Jul 12 - Ares 5G launch - Saturn VC delivers Planetary Propulsion Module PPM-27 into Low Earth Orbit
1990 Jul 13 - PPM-26 and PPM-27 and MM-9 rendezvous and dock, forming
Ingenuity
1990 Jul 25 - Ares 5H launch - Saturn VC delivers Planetary Propulsion Module PPM-28 into Low Earth Orbit
1990 Jul 25 - Ares 5I launch - Saturn VC delivers Planetary Propulsion Module PPM-29 into Low Earth Orbit
1990 Jul 26 - PPM-28 and PPM-29 and
Ingenuity rendezvous and dock
1990 Jul 26 - STS-396 launch - Space Shuttle
Enterprise OV-101 is placed into low Earth orbit and docks with Ingenuity
1990 Jul 27 -
Enterprise places Earth Entry Module
Explorer CSM-315 into
Ingenuity's aft interstage
1990 Jul 31 -
Enterprise undocks and deorbits, landing safely
1990 Aug 1 -
Ingenuity performs their trans-Martian injection burn
1991 Feb 27 -
Ingenuity performs their Mars orbit insertion burn
1991 Feb 28 -
Ingenuity releases her Mars landing probes, which deorbit and touch down successfully
1991 Mar 2 -
Seahawk MEM-107 undocks from
Ingenuity, deorbits, and lands safely at Huygens Crater
1991 Mar 5 - Initial construction of Huygens Base is completed, science mission operations begin
1992 Jul 28 -
Seahawk MEM-107 lifts off, is placed into Mars orbit, and docks with
Ingenuity
1992 Aug 5-13 -
Ingenuity releases several uncrewed probes into Martian orbit
1992 Aug 15 -
Ingenuity performs an apoapsis raise burn to intercept Phobos
1992 Aug 18 -
Seahawk MEM-107 undocks from
Ingenuity and rendezvouses with and lands on Phobos
1992 Aug 21 -
Seahawk MEM-107 lifts off from Phobos and rendezvouses and docks with
Ingenuity
1992 Aug 23 -
Seahawk MEM-107 is jettisoned
1992 Aug 25 -
Ingenuity performs their trans-Earth injection burn
1993 Apr 10 -
Explorer CSM-315 undocks from
Ingenuity and performs a landing target alignment burn
1993 Apr 11 -
Explorer CSM-315 reenters and splashes down safely in the Pacific Ocean